Значение числа 618

Содержание
  1. Числа Фибоначчи и золотое сечение: взаимосвязь
  2. Золотое сечение
  3. Числа Фибоначчи
  4. Спираль Архимеда и золотой прямоугольник
  5. История применения золотых пропорций
  6. Витрувианский человек Леонардо
  7. Исследования золотого сечения в 16-19 веках
  8. Число Фибоначчи и золотое сечение в природе
  9. Использование золотого сечения в искусстве
  10. Золотое сечение в архитектуре
  11. Применение пропорций в дизайне
  12. Применение золотого сечения в кибернетике и технике
  13. Современные исследования теории о золотой пропорции
  14. Число ФИ: значение
  15. Почему это число называют золотым сечением?
  16. Золотое сечение и пропорции человеческого тела
  17. Секреты пирамид
  18. Число ФИ в космосе
  19. Примеры числа ФИ из природы
  20. Золотое сечение и теория Хаоса
  21. Золотое сечение – Божественная мера красоты, Числа Фибоначчи – Аюрведа Плюс. Магазин аюрведических товаров
  22. Число PHI = 1, 618… В ИСКУССТВЕ | Клуб интеллектуалов

Числа Фибоначчи и золотое сечение: взаимосвязь

Во вселенной еще много неразгаданных тайн, некоторые из которых ученые уже смогли определить и описать. Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Золотое сечение

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

В основе его лежит теория о пропорциях и соотношениях делений отрезков, которое было сделано еще древним философом и математиком Пифагором. Он доказал, что при разделении отрезка на две части: X (меньшую) и Y (большую), отношение большего к меньшему будет равно отношению их суммы (всего отрезка):

X : Y = Y : X+Y.

В результате получается уравнение: х2 – х – 1=0, которое решается как х=(1±√5)/2.

Если рассмотреть соотношение 1/х, то оно равно 1,618…

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

  • Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.
  • Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.
  • Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Спираль Архимеда и золотой прямоугольник

Спирали, очень распространенные в природе, были исследованы Архимедом, который даже вывел ее уравнение. Форма спирали основана на законах о золотом сечении. При ее раскручивании получается длина, к которой можно применить пропорции и числа Фибоначчи, увеличение шага происходит равномерно.

Параллель между числами Фибоначчи и золотым сечением можно увидеть и построив «золотой прямоугольник», у которого стороны пропорциональны, как 1,618:1.

Он строится, переходя от большего прямоугольника к малым так, что длины сторон будут равны числам из ряда. Построение его можно сделать и в обратном порядке, начиная с квадратика «1».

При соединении линиями углов этого прямоугольника в центре их пересечения получается спираль Фибоначчи или логарифмическая.

История применения золотых пропорций

Многие древние памятники архитектуры Египта возведены с использованием золотых пропорций: знаменитые пирамиды Хеопса и др.

Архитекторы Древней Греции широко использовалиих их при возведении архитектурных объектов, таких как храмы, амфитеатры, стадионы.

Например, были применены такие пропорции при строительстве античного храма Парфенон, театра Диониса (Афины) и других объектов, которые стали шедеврами древнего зодчества, демонстрирующими гармонию, основанную на математической закономерности.

В более поздние века интерес к золотому сечению поутих, и закономерности были забыты, однако опять возобновился в эпоху Ренессанса вместе с книгой францисканского монаха Л. Пачоли ди Борго «Божественная пропорция» (1509 г.).

В ней были приведены иллюстрации Леонардо да Винчи, который и закрепил новое название «золотое сечение».

Также были научно доказаны 12 свойств золотой пропорции, причем автор рассказывал о том, как проявляется она в природе, в искусстве и называл ее «принципом построения мира и природы».

Витрувианский человек Леонардо

Рисунок, которым Леонардо да Винчи в 1492 г. проиллюстрировал книгу Витрувия, изображает фигуру человека в 2-х позициях с руками, разведенными в стороны. Фигура вписана в круг и квадрат. Этот рисунок принято считать каноническими пропорциями человеческого тела (мужского), описанными Леонардо на основе изучения их в трактатах римского архитектора Витрувия.

Центром тела как равноудаленной точкой от конца рук и ног считается пупок, длина рук приравнивается к росту человека, максимальная ширина плеч = 1/8 роста, расстояние от верха груди до волос = 1/7, от верха груди до верха головы =1/6 и т.д.

С тех пор рисунок используется в виде символа, показывающего внутреннюю симметрию тела человека.

Термин «Золотое сечение» Леонардо использовал для обозначения пропорциональных отношений в фигуре человека. Например, расстояние от пояса до ступней ног соотносится к аналогичному расстоянию от пупка до макушки так же, как рост к первой длине (от пояса вниз). Эти вычисление делается аналогично соотношению отрезков при вычислении золотой пропорции и стремится к 1,618.

Все эти гармоничные пропорции часто используются деятелями искусства для создания красивых и впечатляющих произведений.

Исследования золотого сечения в 16-19 веках

Используя золотое сечение и числа Фибоначчи, исследовательскую работу по вопросу о пропорциях продолжают уже не одно столетие. Параллельно с Леонардо да Винчи немецкий художник Альбрехт Дюрер также занимался разработкой теории правильных пропорций тела человека. Для этого им даже был создан специальный циркуль.

В 16 в. вопросу о связи числа Фибоначчи и золотого сечения были посвящены работы астронома И. Кеплера, который впервые применил эти правила для ботаники.

Новое «открытие» ожидало золотое сечение в 19 в. с опубликованием «Эстетического исследования» немецкого ученого профессора Цейзига. Он возвел эти пропорции в абсолют и объявил о том, что они универсальны для всех природных явлений.

Им были проведены исследования огромного количества людей, вернее их телесных пропорций (около 2 тыс.

), по итогам которых сделаны выводы о статистических подтвержденных закономерностях в соотношениях различных частей тела: длины плеч, предплечий, кистей, пальцев и т.д.

Были исследованы также предметы искусства (вазы, архитектурные сооружения), музыкальные тона, размеры при написании стихотворений — все это Цейзиг отобразил через длины отрезков и цифры, он же ввел термин «математическая эстетика». После получения результатов выяснилось, что получается ряд Фибоначчи.

Число Фибоначчи и золотое сечение в природе

В растительном и животном мире существует тенденция к формообразованию в виде симметрии, которая наблюдается в направлении роста и движения. Деление на симметричные части, в которых соблюдаются золотые пропорции, — такая закономерность присуща многим растениям и животным.

Природа вокруг нас может быть описана с помощью чисел Фибоначчи, например:

  • расположение листьев или веток любых растений, а также расстояния соотносятся с рядом приведенных чисел 1, 1, 2, 3, 5, 8, 13 и далее;
  • семена подсолнуха (чешуя на шишках, ячейки ананаса), располагаясь двумя рядами по закрученным спиралям в разные стороны;
  • соотношение длины хвоста и всего тела ящерицы;
  • форма яйца, если провести линию условно через широкую его часть;
  • соотношение размеров пальцев на руке человека.

И, конечно, самые интересные формы представляют закручивающиеся по спирали раковины улиток, узоры на паутине, движение ветра внутри урагана, двойная спираль в ДНК и структура галактик — все они включают в себя последовательность чисел Фибоначчи.

Использование золотого сечения в искусстве

Исследователи, занимающиеся поиском в искусстве примеров использования золотого сечения, подробно исследуют различные архитектурные объекты и произведения живописи. Известны знаменитые скульптурные работы, создатели которых придерживались золотых пропорций, — статуи Зевса Олимпийского, Аполлона Бельведерского и Афины Парфенос.

Одно из творений Леонардо да Винчи — «Портрет Моны Лизы» — уже многие годы является предметом исследований ученых.

Ими было обнаружено, что композиция работы целиком состоит из «золотых треугольников», объединенных вместе в правильный пятиугольник-звезду.

Все работы да Винчи являются свидетельством того, насколько глубоки были его познания в строении и пропорциях тела человека, благодаря чему он и смог уловить невероятно загадочную улыбку Джоконды.

Золотое сечение в архитектуре

В качестве примера ученые исследовали шедевры архитектуры, созданные по правилам «золотого сечения»: египетские пирамиды, Пантеон, Парфенон, Собор Нотр-Дам де Пари, храм Василия Блаженного и др.

Парфенон — одно из красивейших зданий в Древней Греции (5 в. до н.э.) — имеет 8 колонн и 17 по разным сторонам, отношение его высоты к длине сторон равно 0,618. Выступы на его фасадах сделаны по «золотому сечению» (фото ниже).

Одним из ученых, который придумал и успешно применял усовершенствование модульной системы пропорций для архитектурных объектов (так называемый «модулор»), — был французский архитектор Ле Корбюзье. В основу модулора положена измерительная система, связанная с условным делением на части человеческого тела.

Русский архитектор М. Казаков, построивший несколько жилых домов в Москве, а также здания сената в Кремле и Голицынской больницы (сейчас 1-я Клиническая им. Н. И. Пирогова), — был одним из архитекторов, которые использовали при проектировании и строительстве законы о золотом сечении.

Применение пропорций в дизайне

В дизайне одежды все модельеры делают новые образы и модели с учетом пропорций человеческого тела и правил золотого сечения, хотя от природы не все люди имеют идеальные пропорции.

При планировании ландшафтного дизайна и создании объемных парковых композиций с помощью растений (деревьев и кустарников), фонтанов и малых архитектурных объектов также могут применяться закономерности «божественных пропорций». Ведь композиция парка должна быть ориентирована на создание впечатления на посетителя, который свободно сможет ориентироваться в нем и находить композиционный центр.

Все элементы парка находятся в таких соотношениях, чтобы с помощью геометрического строения, взаиморасположения, освещения и света, произвести на человека впечатление гармонии и совершенства.

Применение золотого сечения в кибернетике и технике

Закономерности золотого сечения и чисел Фибоначчи проявляются также в переходах энергии, в процессах, происходящих с элементарными частицами, составляющих химические соединения, в космических системах, в генной структуре ДНК.

Аналогичные процессы происходят и в организме человека, проявляясь в биоритмах его жизни, в действии органов, например, головного мозга или зрения.

Алгоритмы и закономерности золотых пропорций широко используются в современной кибернетике и информатике. Одна из несложных задач, которую дают решать начинающим программистам, — написать формулу и определить, сумму чисел Фибоначчи до определенного числа, используя языки программирования.

Современные исследования теории о золотой пропорции

Начиная с середины 20 века, интерес к проблемам и влиянию закономерностей золотых пропорций на жизнь человека, резко возрастает, причем со стороны многих ученых различных профессий: математиков, исследователей этноса, биологов, философов, медицинских работников, экономистов, музыкантов и др.

В США с 1970-хгодов начинает выпускаться журнал The Fibonacci Quarterly, где публикуются работы на эту тему. В прессе появляются работы, в которых обобщенные правила золотого сечения и ряда Фибоначчи используют в различных отраслях знаний. Например, для кодирования информации, химических исследований, биологических и т.д.

Все это подтверждает выводы древних и современных ученых о том, что золотая пропорция многосторонне связана с фундаментальными вопросами науки и проявляется в симметрии многих творений и явлений окружающего нас мира.

Источник: http://.ru/article/323642/chisla-fibonachchi-i-zolotoe-sechenie-vzaimosvyaz

Число ФИ: значение

Число Фи обозначает все красивое во Вселенной

Число ФИ или латинскими буквами PHI – это число, которое обозначает все красивое во Вселенной. Что же это за необычное число, и какие другие названия у него существуют?

Почему это число называют золотым сечением?

Это число получил исследователь Фибоначчи

В древней Греции был один скульптор Фидий, который обладал удивительным талантом. Все восхищались его скульптурами и пытались разгадать, как этому творцу удается каждый раз делать настоящее произведение искусства. Позже стало известно, что в каждой своей скульптуре Фидий придерживается определенного числа в пропорциях.

Затем оказалось, что не только этот творец использовал в своем искусстве это необыкновенное число. Оно было обнаружено в произведениях искусства художника Рафаэля, русского художника Шишкина, число гнездилось в музыкальных произведениях Бетховена, Шопена и Чайковского. Знаменитая «Джаконда» Леонардо Да Винчи тоже содержит в себе это число. Его еще называют золотым сечением.

ЧИСЛА ФИБОНАЧЧИ УДИВИТЕЛЬНАЯ ЗАКОНОМЕРНОСТЬ [Число ФИ и Золотое сечение]

Тайна числа 1.618034 – самое ВАЖНОЕ число в мире

По математическим меркам число ФИ равно 1.618, его получил исследователь Фибоначчи. Этот ученый в результате своих исследований пришел к тому, что все числа имеют четкую последовательность.

Каждый следующий член, начиная с третьего числа, несет в себе сумму двух прошлых членов. А частное двух соседних чисел представляет собой максимально приближено к числу 1.

618, то есть к тому самому числу ФИ.

Золотое сечение и пропорции человеческого тела

Человеческое тело сотворено по принципу золотого сечения

Наверное, все видели знаменитую картину Леонардо Да Винчи, где расчерчено человеческое тело. Именно при помощи этой знаменитой схеме Леонардо доказал, что человеческое тело сотворено по принципу золотого сечения. Пропорции тела человека всегда дают то самое число красоты ФИ.

При желании такую теорию можно легко проверить на практике. Нужно измерить при помощи сантиметра длину от плеча до кончика самого длинного пальца, а потом поделить его на длину от локтя до кончика того же самого пальчика.

Удивительно, но в результате вы получите как раз 1.618! То самое число красоты. Это не единственный пример. Измерьте расстояние от верхней части бедра, поделите его на длину от колена до пола, вы получите такое же значение.

Таким образом, легко доказать, человек полностью состоит из божественной пропорции.

Кроме того на теле человека легко можно обнаружить признак того самого золотого сечения. Это наш пупок. Интересно отметить, что замеры тела мужчин чуть больше приближены к заветному числу. Это примерно 1.625. Женские же пропорции больше подходят под значение 1.6.

Секреты пирамид

На принципе числа Фи построены пирамиды в Гизе

На протяжении многих лет люди пытались открыть загадку Пирамиды в Гизе. Но на этот раз пирамида интересовала человечество не в качестве склепа, а как уникальная комбинация числовых значений.

Эту пирамиду возвел мастер, который обладает удивительной изобретательностью, он не пожалел труда и времени для этого произведения. На ее сотворение были пущены лучшие архитекторы, которых удалось найти.

Долго современные ученые недоумевали как древним египтянам, у которых не было письменности, удалось придумать такой сложный геометро-математический ключ. После длительных просчетов оказалось, что и в этом случае не обошлось без золотого сечения и числа ФИ.

Как раз на этом принципе и основана эта пирамида. Некоторые современные ученые считают, что посредством этого произведения древние египтяне пытались передать своим современникам секрет природной красоты и гармонии.

Не исключительно в Гизе существуют пирамиды, которые выстроены, пирамиды, которые расположены в Мексике, тоже выстроены таким образом. Именно поэтому современные исследователи приходят к выводу, что пирамиды на этих территориях были построены народом, который имеет общие корни.

Число ФИ в космосе

В астрономии тоже присутствует число Фи

Астроном из Германии Тициус в XVIII столетии заметил, что ряд числовых значений Фибоначчи присутствует и в расстоянии между планетами всей солнечной системы. В этом не было бы ничего удивительного, если бы такая закономерность не шла в противостоянии с одним законом.

Дело в том, что между Марсом и Юпитером планеты нет, так раньше думали астрономы. Однако после выведения этой закономерности, они тщательно исследовали эту область галактики и обнаружили там ряд астероидов.

К сожалению, такое важное открытие произошло, когда тот самый Тициус уже ушел из жизни.

Теперь в астрономии при помощи числовых соотношений Фибоначчи представляют строение Галактик. Такой факт свидетельствует о независимости данных числовых соотношений от условий проявления, тем самым доказывается их универсальность.

Примеры числа ФИ из природы

Существуют интересные примеры числа ФИ из самой природы

Вот интересные примеры числа ФИ из самой природы:

  • Если взять пчелиный улий, пересчитать в нем количество пчел-мальчиков и пчел-девочек, потом мальчиков поделить на девочек, то каждый раз вы получить 1,618.
  • Семечки в подсолнухе расположены по принципу спирали, против направления часовой стрелки. Диаметр каждой спирали в подсолнухе равен следующей спирали тоже 1.618.
  • Тот же принцип со спиралями действует на панцире улитки.
  • Если провести анализ, как вытягивается к небу каждое растение, то можно заметить, что маленький росточек делает большой рывок вверх, затем следует остановка и выпускание одного листочка, который будет несколько короче первого росточка. Потом снова следует бросок вверх, но уже с меньшей силой. Если все это перевести в математическое значение, то первый бросок будет равен 100, второй 62, третий 38 единицам, четвертый 24 и так дальше. Это значит, что рывки в росте уменьшаются по тому же принципу золотого сечения.
  • Живородящая ящерица. В таком удивительном существе, как ящерица можно даже невооруженным взглядом заметить божественные пропорции. Соотношение длины хвоста этого животного равно длине всего остального тела этого существа, как 62 относится к 38.

Исходя из всех этих примеров, их на самом деле гораздо больше ученые делают вывод, что в мире растений и мире животных присутствует симметрия в отношении роста и движения. Золотое сечение проявлено здесь перпендикулярно к направлению роста.

Золотое сечение и теория Хаоса

В каждом природном явлении присутствует свое золотое соотношение чисел

Одни ученые заметили, что все в мире происходит хаотично. А другие подвели итог, что даже в хаосе, которому подвержен весь мир, можно найти свои конкретные закономерности. Эти самые закономерности тоже выражены в числовых значениях Фибоначчи. В каждом природном явлении присутствует свое золотое соотношение чисел. В этом смысле природа не может соревноваться с сухой и скучной геометрией.

Геометрия при всей своей точности и конструктивности не способна описать форму облака, дерева или горы. Облако не может быть представлено сферой, гора конусом, берег моря не может найти свое выражение в геометрической окружности.

Кора дерева не может быть выражена этой наукой, потому что она не гладкая, а молния никогда не будет двигаться по прямой. Природные явления представляют собой не только более высокую степень, а совершенно новый уровень сложности.

В природе представлены наборы масштабов, разные длины объектов, поэтому они способны закрывать неисчислимое количество потребностей. Такой набор масштабов и измерений несет название фрактал.

Именно при помощи фракталов ученые не оставляют попытки сделать описание объектов, которые не доступны линейной геометрии. Это фрактальная геометрия. Каждый человек тоже представляет собой фрактал.

А еще интересно то, что число ФИ имеет бесконечную природу, это означает, что мы бесконечно можем делать новые открытия во Вселенной и в себе самом.

Источник: http://privorogi.ru/numerologiya/chislo-fi.html

Золотое сечение – Божественная мера красоты, Числа Фибоначчи – Аюрведа Плюс. Магазин аюрведических товаров

21.11.2011

Давайте выясним, что общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи “Мона Лиза”, подсолнухом, улиткой, сосновой шишкой и пальцами человека?

Ответ на этот вопрос сокрыт в удивительных числах, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи (род. ок. 1170 – умер после 1228), итальянский математик. Путешествуя по Востоку, познакомился с достижениями арабской математики; способствовал передаче их на Запад.

https://www.youtube.com/watch?v=r8O-MCSs1PE

После его открытия числа эти так и стали называться именем известного математика. Удивительная суть последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел.

Итак, числа, образующие последовательность:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, …

называются “числами Фибоначчи”, а сама последовательность – последовательностью Фибоначчи. В числах Фибоначчи существует одна очень интересная особенность.

При делении любого числа из последовательности на число, стоящее перед ним в ряду, результатом всегда будет величина, колеблющаяся около иррационального значения 1.61803398875… и через раз то пpевосходящая, то не достигающая его. (Прим.

иррациональное число, т.е. число, десятичное представление которого бесконечно и не периодично)

Более того, после 13-ого числа в последовательности этот результат деления становится постоянным до бесконечности ряда… Именно это постоянное число деления в средние века было названо Божественной пропорцией, а ныне в наши дни именуется как золотое сечение, золотое сpеднее или золотая пропорция. В алгебpе это число обозначается гpеческой буквой фи (Ф)

Итак, Золотая пропорция = 1 : 1,618

233 / 144 = 1,618

377 / 233 = 1,618

610 / 377 = 1,618

987 / 610 = 1,618

1597 / 987 = 1,618

2584 / 1597 = 1,618  

Тело человека и золотое сечение.

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Леонардо Да Винчи и Ле Корбюзье перед тем как создавать свои шедевры брали параметры человеческого тела, созданного по закону Золотой пропорции.

Самая главная книга всех современных архитекторов справочник Э.Нойферта “Строительное проектирование” содержит основные расчеты параметров туловища человека, заключающие в себе золотую пропорцию. 

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Принцип расчета золотой меры на теле человека можно изобразить в виде схемы:

M/m=1,618

Первый пример золотого сечения в строении тела человека:
Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Кроме этого есть и еще несколько основных золотых пропорции нашего тела:

* расстояние от кончиков пальцев до запястья до локтя равно 1:1.618;

* расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618; * расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618; * расстояние точки пупа до коленей и от коленей до ступней равно 1:1.

618; * расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618; * расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.

618;

  * расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618:

Золотое сечение в чертах лица человека как критерий совершенной красоты.

В строении черт лица человека также есть множество примеров, приближающихся по значению к формуле золотого сечения. Однако не бросайтесь тотчас же за линейкой, чтобы обмерять лица всех людей.

Потому что точные соответствия золотому сечению, по мнению ученых и людей искусства, художников и скульпторов, существуют только у людей с совершенной красотой.

Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

К примеру, если мы суммируем ширину двух передних верхних зубов и разделим эту сумму на высоту зубов, то, получив при этом число золотого сечения, можно утверждать, что строение этих зубов идеально. 

На человеческом лице существуют и иные воплощения правила золотого сечения. Приведем несколько таких соотношений:

* Высота лица / ширина лица;

* Центральная точка соединения губ до основания носа / длина носа;

* Высота лица / расстояние от кончика подбородка до центральной точки соединения губ;

* Ширина рта / ширина носа;

* Ширина носа / расстояние между ноздрями;

* Расстояние между зрачками / расстояние между бровями.

Рука человека.

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения. Каждый палец нашей руки состоит из трех фаланг.

* Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца);

* Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения;

* У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи:

Золотая пропорция в строении легких человека.

Американский физик Б.Д.Уэст и доктор А.Л. Гольдбергер во время физико-анатомических исследований установили, что в строении легких человека также существует золотое сечение.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

* Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях. Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Строение золотого ортогонального четырехугольника и спирали.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168 : 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров.

Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники.

Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так:

“Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее.”

В природе.

* Лежащее в основе строения спирали правило золотого сечения встречается в природе очень часто в бесподобных по красоте творениях. Самые наглядные примеры – спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.;

* Ботаники установили, что в расположении листьев на ветке, семян подсолнечника или шишек сосны со всей очевидность проявляется ряд Фибоначчи, а стало быть, проявляется закон золотого сечения;

Всевышний Господь каждому Своему творению установил особую меру и придал соразмерность, что подтверждается на примерах, встречающихся в природе. Можно привести великое множество примеров, когда процесс роста живых организмов происходит в строгом соответствии с формой логарифмической спирали.

Все пружинки в спирали имеют одинаковую форму. Математики установили, что даже при увеличении размеров пружинок форма спирали остается неизменной. В математике нет более иной формы, которая обладала бы такими же уникальными свойствами как спираль. 

Строение морских раковин.

Ученые, изучавшие внутреннее и внешнее строение раковин мягкотелых моллюсков, обитающих на дне морей, констатировали:

“Внутренняя поверхность раковин безупречно гладкая, а внешняя вся покрыта шероховатостями, неровностями. Моллюск был в раковине и для этого внутренняя поверхность раковины должна была быть безупречно гладкой.

Внешние углы-изгибы раковины увеличивают ее крепость, твердость и таким образом повышают ее прочность. Совершенство и поразительная разумность строения ракушки (улитки) восхищает.

Спиральная идея раковин является совершенной геометрической формой и удивительна по своей отточенной красоте.”

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали. Однако нет сомнения, что эти неразумные существа не имеют представления не только о логарифмической спирали, но не обладают даже простейшими математическими знаниями, чтобы самим создать себе спиралевидную раковину..

Но тогда как же эти неразумные существа смогли определить и избрать для себя идеальную форму роста и существования в виде спиральной раковины? Могли ли эти живые существа, которых ученых мир называет примитивными формами жизни, рассчитать, что идеальной для их существования будет логарифмическая форму ракушки?

Конечно же нет, потому что такой замысел невозможно осуществить без наличия разума и знаний. Но таковым разумом не обладают ни примитивные моллюски, ни бессознательная природа, которую, правда, некоторые ученые называют создательницей жизни на земле(?!)

Пытаться объяснить происхождение подобной даже самой примитивной формы жизни случайным стечением неких природных обстоятельств по меньшей мере абсурдно. Совершенно ясно, что этот проект является осознанным творением. 

Биолог Сэр Д`арки Томпсон этот вид роста морских раковин называет “форма роста гномов”.

Источник: http://www.ayurvedaplus.ru/articles/218/253040/

Число PHI = 1, 618… В ИСКУССТВЕ | Клуб интеллектуалов

Итак, прошу познакомиться… Число PHI = 1, 618

* И не следует путать его с «пи», ибо, как говорят математики:

– буква «Н» делает его гораздо круче!
Знаете ли вы, что…

– Число PHI является самым важным и значимым числом в изобразительном искусстве. Число PHI, по всеобщему мнению, признано самым красивым во вселенной.

Это число получено из последовательности Фибоначчи: – математической прогрессии, известной не только тем, что сумма двух соседних чисел в ней равна последующему числу, но и потому, что частное двух соседствующих чисел обладает уникальным свойством – приближенностью к числу 1, 618, то есть к числу PHI! Несмотря на почти мистическое происхождение, число PHI сыграло по-своему уникальную роль. Роль кирпичика в фундаменте построения всего живого на земле. Все растения, животные и даже человеческие существа наделены физическими пропорциями, приблизительно равными корню от соотношения числа PHI к 1. Эта вездесущность PHI в природе указывает на связь всех живых существ. Раньше считали, что число PHI было предопределено Творцом вселенной. Ученые древности называли число=1,618 «божественной пропорцией». Известно ли вам, что если в любом на свете улье разделить число женских особей на число мужских, то вы всегда получите одно и то же число? Число PHI. Если посмотреть на спиралеобразную морскую раковину наутилус (Головоногий моллюск), то соотношение диаметра каждого витка спирали к следующему = 1,618.

Опять PHI – Божественная пропорция.

  • Цветок подсолнечника со зрелыми семенами.
  • Семена подсолнечника располагаются по спиралям, против часовой стрелки.
  • Соотношение диаметра каждой из спиралей к диаметру следующей = PHI.

Если посмотреть на спиралеобразно закрученные листья початка кукурузы, расположение листьев на стеблях растений, сегментационные части тел насекомых, то все они в строении своем послушно следуют закону «божественной пропорции». Какое отношение нее это имеет к искусству? Знаменитый рисунок Леонардо да Винчи, изображающий обнаженного мужчину в круге.

«Витрувианский человек» (назван в честь Маркуса Витрувия, гениального римского архитектора, который вознес хвалу «божественной пропорции» в своих «Десяти книгах об архитектуре»). Никто лучше да Винчи не понимал божественной структуры человеческого тела, его строения.

Да Винчи первым показал, что тело человека состоит из «строительных блоков», соотношение пропорций которых всегда равно нашему заветному числу. Не верите? Тогда, когда пойдете в душ, не забудьте прихватить с собой сантиметр. Все так устроены. И юноши, и девушки. Проверьте сами. Измерьте расстояние от макушки до пола. Затем разделите на свой рост.

И увидите, какое получится число. Измерьте расстояние от плеча до кончиков пальцев, затем разделите его на расстояние от локтя до тех же кончиков пальцев. Расстояние от верхней части бедра, поделенное на расстояние от колена до пола, и снова PHI. Фаланги пальцев рук. Фаланги пальцев ног. И снова PHI… PHI…
Как видите, за кажущимся хаосом мира скрывается порядок.

И древние, открывшие число PHI, были уверены, что нашли тот строительный камень, который Господь Бог использовал для создания мира. Многие из нас прославляют Природу, как делали это язычники, вот только сами до конца не понимают почему.

Человек просто играет по правилам Природы, а потому искусство есть не что иное, как попытка человека имитировать красоту, созданную Творцом вселенной. Если рассматривать произведениями Микеланджело, Альбрехта Дюрера, Леонардо да Винчи и многих других художников, (Ж.-Л.Давид. Амур и Психея.

1817) то мы увидим, что каждый из них строго следовал «божественным пропорциям» в построении своих композиций. Это магического число находим в архитектуре, в пропорциях греческого Парфенона, пирамид Египта, даже здания ООН в Нью-Йорке.

PHI проявлялось в строго организованных структурах моцартовских сонат, в Пятой симфонии Бетховена, а также в произведениях Бартока, Дебюсси и Шуберта. Число PHI использовал в расчетах Страдивари при создании своей уникальной скрипки. Пятиконечную звезду – этот символ является одним из самых могущественных образов.

Он известен под названием пентаграмма, или пентакл, как называли его древние. И на протяжении многих веков и во многих культурах символ этот считался одновременно божественным и магическим. Потому что, когда вы рисуете пентаграмму, линии автоматически делятся на сегменты, соответствующие «божественной пропорции».

Соотношение линейных сегментов в пятиконечной звезде всегда равно числу PHI, что превращает этот символ в наивысшее выражение «божественной пропорции». Именно по этой причине пятиконечная звезда всегда была символом красоты и совершенства и ассоциировалась с богиней и священным женским началом.

Доказано, что Леонардо был последовательным поклонником древних религий, связанных с женским началом. «Тайная вечеря» – стала одним из самых удивительных примеров поклонения Леонардо да Винчи Золотому Сечению. Эпоха Возрождения ассоциируется с именами таких «титанов», как Леонардо да Винчи, Микеланджело, Рафаэль, Николай Коперник, Альберт Дюрер, Лука Пачоли.

И первое место в этом списке по праву занимает Леонардо да Винчи, величайший художник, инженер и ученый эпохи Возрождения. Имеется много авторитетных свидетельств о том, что именно Леонардо да Винчи был одним из первых, кто ввел сам термин «Золотое Сечение». «Термин «золотое сечение» (aurea sectio) идет от Клавдия Птолемея, который дал это название числу 0,618.

Закрепился же данный термин и стал популярным благодаря Леонардо да Винчи, который часто его использовал». Для самого Леонардо да Винчи искусство и наука были связаны неразрывно.

Отдавая в «споре искусств» пальму первенства живописи, Леонардо да Винчи понимал её как универсальный язык (подобный математике в сфере наук), который воплощает посредством пропорций и перспективы все многообразные проявления разумного начала, царящего в природе.

Согласно художественным канонам Леонардо, золотая пропорция отвечает не только делению тела на две неравные части линией талии, при котором отношение большей части к меньшей равно отношению целого к большей части (это отношение приблизительно равно 1,618).

Отношение высоты лица (до корней волос) к вертикальному расстоянию между дугами бровей и нижней частью подбородка; расстояние между нижней частью носа и нижней частью подбородка к расстоянию между углами губ и нижней частью подбородка – это тоже “золотая пропорция”.

Наиболее ярким свидетельством огромной роли Леонардо да Винчи в развитии теории Золотого Сечения является его влияние на творчество выдающегося итальянского математика эпохи Возрождения Луки Пачоли, который именовал себя Лука ди Борго Сан Сеполькро.

Последний был уже знаменитым математиком, автором книги «Сумма об арифметике, геометрии, пропорциях и пропорциональностях», когда он познакомился с Леонардо да Винчи. Леонардо да Винчи стал третьим великим человеком (после Пьеро делла Франческо и Леона Баттиста Альберти), встретившимся на жизненном пути Луки Пачоли.

Считается, что именно под влиянием Леонардо да Винчи Лука Пачоли начинает писать свою «вторую великую книгу», названную им «О божественной пропорции». Эта книга была опубликована в 1509 г. Для этой книги Леонардо сделал иллюстрации. Об авторстве Леонардо сохранилось свидетельство самого Пачоли: «…таковые были сделаны достойнейшим живописцем, перспективистом, архитектором, музыкантом и всеми совершенствами одаренным Леонардо да Винчи, флорентийцем, в городе Милане…». У Витрувия описаны и другие антропометрические закономерности. Собственно «витрувианским человеком» в литературе последующих веков называли подобные изображения, демонстрирующие пропорции человеческого тела и их связь с архитектурой. 1. Ц. Цезариано. Издание Витрувия, 3-й том. Комо, 1521 2. Там же. В отличие от его квадратного собрата, у этого изображена эрекция 3. Ж. Мартен. Архитектура, или искусство строительства. Париж, 1547. Гравюра Ж. Гужона 4. Ф. Джокондо. Манускрипт Витрувия с исправлениями Джокондо, с иллюстрациями и оглавлением для чтения и понимания. 3-й том. Венеция, 1511 5. П. Катанео. Первые четыре книги по архитектуре. Венеция, 1554. Фигура вписана в крестообразный план церкви 6. В. Скамоцци. Идея универсальной архитектуры. Часть I, книга 1. Лондон, 1676. Центральный фрагмент гравюры В наше время витрувианский человек в версии Да Винчи уже не воспринимается как геометрическая схема человеческого тела. Он превратился, ни много ни мало, в символ человека, человечества и вселенной.

А мы и не против…

Источник: http://maxpark.com/community/88/content/2177391

Магия и Таро
Добавить комментарий